ECS332 2018/1
 Part II. 2
 Dr.Prapun

4 Amplitude/Linear Modulation

4.1. The big picture:

Definition 4.2. A sinusoidal carrier signal $A \cos \left(2 \pi f_{c} t+\phi\right)$ has three basic parameters: amplitude, frequency, and phase. Varying these parameters in proportion to the baseband signal results in amplitude modulation (AM), frequency ${ }^{16}$ modulation (FM), and phase modulation (PM), respectively.

Collectively, these techniques are called continuous-wave (CW) modulation [14, p 111][3, p 162].

[^0]Definition 4.3. Amplitude modulation is characterized by the fact that the amplitude A of the carrier $A \cos \left(2 \pi f_{c} t+\phi\right)$ is varied in proportion to the baseband (message) signal $m(t)$.

- Because the amplitude is time-varying, we may write the modulated carrier as

$$
A(t) \operatorname{os}\left(2 \pi f_{c} t+\phi\right) \quad A(t) \propto m(t)
$$

- Because the amplitude is finery related to the message signal, this technique is also called linear modulation.

4.1 Double-sideband suppressed carrier (DSB-SC) modulation

Definition 4.4. In double-sideband-suppressed-carrier (DSB-SC or DSSC or simply DSB) modulation, the modulated signal is

$$
x(t)=A_{c} \cos \left(2 \pi f_{c} t\right) \times m(t)
$$

We have seen that the multiplication by a sinusoid gives two shifted and scaled replicas of the original signal spectrum:

$$
X(f)=\frac{A_{c}}{2} M\left(f-f_{c}\right)+\frac{A_{c}}{2} M\left(f+f_{c}\right) .
$$

- When we set $A_{c}=\sqrt{2}$, we get the "simple" modulator discussed in $m(f)$ Example 3.13 .
- As usual, we assume that the message is band-limited to B.

- We need $f_{c}>B$ to avoid spectral overlapping. In practice, $f_{c} \gg B$. $M(f)=0$

$$
\left.\begin{array}{rl}
\text { Ex. AM radio } \quad f_{c} \approx 1 \mathrm{nHz} \\
B \approx 5 \mathrm{kHz}
\end{array}\right\} \Rightarrow \frac{t_{c}}{B} \approx 200 \quad \text { when }|f|>B
$$

4.5. Synchronous/coherent detection by the product demodulator:

The incoming modulated signal is first multiplied with a locally generated sinusoid with the same phase and frequency (from a local oscillator (LO)) and then lowpass-filtered, the filter bandwidth being the same as the message bandwidth B or somewhat larger.
4.6. A DSB-SC modem with no channel impairment is shown in Figure 18 .

For this system to work, there are two

Figure 18. DSB-SC modem with no channel infapairment
requirements: $\quad \alpha \times \frac{1}{2} \times \sqrt{2}$
(1) $m(t)$ is bondlimited \uparrow from A_{c} to B $(M(f)=0$ when from cos $|f|>B$)
A low-pass filter (LPF) is a filter that passes signals with freyr. lower than a selected cut-off freq. and
attenuates signals with fieq. higher than the cutoff freq.

Ex. Ideal LPF

Ex. More practical LPF

Figure 19: DSB-SC modem: signals and their spectra

Once again, recall that $x(t)=\sqrt{2} \cos \left(2 \pi f_{c} t\right) m(t)$

$$
\begin{aligned}
X(f) & =\sqrt{2}\left(\frac{1}{2}\left(M\left(f-f_{c}\right)+M\left(f+f_{c}\right)\right)\right) \\
& =\frac{1}{\sqrt{2}}\left(M\left(f-f_{c}\right)+M\left(f+f_{c}\right)\right)
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
v(t) & =y(t) \times \sqrt{2} \cos \left(2 \pi f_{c} t\right)=\sqrt{2} x(t) \cos \left(2 \pi f_{c} t\right) \\
V(f) & =\frac{1}{\sqrt{2}}\left(X\left(f-f_{c}\right)+X\left(f+f_{c}\right)\right) \\
& =\frac{1}{2}\left(M\left(f-f_{c}-f_{c}\right)+M\left(f-f_{c}+f_{c}\right)\right.
\end{aligned}
$$

$$
\left.+M\left(f+f_{c}-f_{c}\right)+M\left(f+f_{c}+f_{c}\right)\right)
$$

Alternatively, we can work in the time domain and utilize the trig. aden- LPF. tity from Example 2.4:

$$
\begin{aligned}
v(t) & =\sqrt{2} x(t) \cos \left(2 \pi f_{c} t\right)=\sqrt{2}\left(\sqrt{2} m(t) \cos \left(2 \pi f_{c} t\right)\right) \cos \left(2 \pi f_{c} t\right) \\
& =2 m(t) \cos ^{2}\left(2 \pi f_{c} t\right)=m(t)\left(\cos \left(2\left(2 \pi f_{c} t\right)\right)+1\right) \\
& =m(t)+m(2) \cos \left(2 \pi\left(2 f_{c}\right) t\right) \\
\hat{m}(t) & =m(t) \quad \begin{aligned}
44
\end{aligned}
\end{aligned}
$$

Figure 20: DSB-SC modem: signals and their spectra (zooming in)

Figure 21: DSB-SC modem: signals in time domain

Key equation for DSB-SC modem:

$$
\begin{equation*}
\operatorname{LPF}\{\underbrace{\left(m(t) \times \sqrt{2} \cos \left(2 \pi f_{c} t\right)\right)}_{x(t)} \times\left(\sqrt{2} \cos \left(2 \pi f_{c} t\right)\right)\}=m(t) \tag{34}
\end{equation*}
$$

where the frequency response of the LPF should satisfy

$$
H_{\mathrm{LP}}(f)= \begin{cases}1, & |f| \leq B \\ 0, & |f| \geq 2 f_{c}-B \\ \text { any, } & \text { otherwise }\end{cases}
$$

4.7. Implementation issues:
(a) Problem 1: Modulator construction $\left.\begin{array}{l}\text { square mod. } \\ \text { sw mod. }\end{array}\right\}$ sec. 4. 3
(b) Problem 2: Synchronization between the two (local) carriers/oscillators \uparrow
(c) Problem 3: Spectral inefficiency

4.8. Spectral inefficiency/redundancy: When $m(t)$ is real-valued, its spectrum $M(f)$ has conjugate symmetry. With such message, the corresponding modulated signal's spectrum $X(f)$ will also inherit the symmetry but now centered at f_{c} (instead of at 0). The portion that lies above f_{c} is known as the upper sideband (USB) and the portion that lies below f_{c} is known as the lower sideband (LSB). Similarly, the spectrum centered at $-f_{c}$ has upper and lower sidebands. Hence, this is a modulation scheme with double sidebands. Both sidebands contain the same (and complete) information about the message.
4.9. Synchronization: Observe that (34) requires that we can generate $\cos \left(\omega_{c} t\right)$ both at the transmitter and receiver. This can be difficult in practice. Suppose that the frequency at the receiver is off, say by Δf, and that the phase is off by θ. The effect of these frequency and phase offsets can be quantified by calculating

$$
\operatorname{LPF}\left\{\left(m(t) \sqrt{2} \cos \left(2 \pi f_{c} t\right)\right) \sqrt{2} \cos \left(2 \pi\left(f_{c}+\Delta f\right) t+\theta\right)\right\}
$$

which gives

$$
\overbrace{\cos (2 \pi(\Delta f) t+\theta)}^{\infty}
$$

When Δf is small, the "cos" factor will scale the message could be near 0 for a while (periodically) when $\Delta f=0$, but $\theta=90^{\circ}, 270^{\circ}, \ldots$ "cw" factor $=0$ at all time!

Of course, we want $\Delta \omega=0$ and $\theta=0$; that is the receiver must generate a carrier in phase and frequency synchronism with the incoming carrier.
At home, we the space below to find $\hat{m}(t)$

$$
m(t) \rightarrow \rightarrow \sim A_{c}
$$

More general modulation formula

$$
\begin{aligned}
\cos (x) & =\frac{e^{j \alpha}+e^{-j x}}{2} \\
\cos (x+\phi) & =\frac{e^{j \phi} e^{j \phi}+e^{-j \phi} e^{j \phi}}{2} \\
\cos \left(2 \pi f_{c} t+\phi\right) & =\frac{1}{2} e^{j \phi} e^{j 2 \pi f_{c} t}+\frac{1}{2} e^{-j \phi} e^{j<\pi\left(-f_{c}\right) t} \\
g(t) \cos \left(2 \pi f_{c} t+\phi\right) & \xrightarrow{\mathcal{F}} \frac{1}{2} e^{j \phi} G\left(f-f_{c}\right)+\frac{1}{2} e^{-j \phi} G\left(f-\left(-f_{c}\right)\right)
\end{aligned}
$$

As usual, we assume
(1) $m(t)$ is band limited to $B .(m(f)=0$ when $|f|>B)$
(2) $f_{c} \gg B$
4.10. Effect of time delay:

$$
m(t) \sqrt{2} \cos \left(2 \pi f_{c} t\right)
$$

$$
=\delta\left(t-\tau^{2}\right) d
$$

$$
\begin{array}{ll}
x(t-\tau) & \sqrt{2} \cos \left(2 \pi f_{c} t\right) \\
\text { distance }
\end{array}
$$

Suppose the propagation time is τ, then we have

$$
\begin{aligned}
y(t) & =x(t-\tau)=\sqrt{2} m(t-\tau) \cos \left(2 \pi f_{c}(t-\tau)\right) \\
& =\sqrt{2} m(t-\tau) \cos \left(2 \pi f_{c} t-2 \pi f_{c} \tau\right) \\
& =\sqrt{2} m(t-\tau) \cos \left(2 \pi f_{c} t-\phi_{\tau}\right)
\end{aligned}
$$

Consequently,

$$
\begin{aligned}
v(t) & =y(t) \times \sqrt{2} \cos \left(2 \pi f_{c} t\right) & \cos (\mathbf{A}) \cos (\mathbf{B}) \\
& =\sqrt{2} m(t-\tau) \cos \left(2 \pi f_{c} t-\phi_{\tau}\right) \times \sqrt{2} \cos \left(2 \pi f_{c} t\right) & =\frac{1}{2}(\cos (\mathbf{A}+\mathbf{B}) \\
& =m(t-\tau) 2 \cos (\underbrace{2 \pi f_{c} t-\phi_{\tau}}_{A}) \cos (\underbrace{2 \pi f_{c} t}_{B}) . & +\cos (\mathbf{A}-\boldsymbol{B}))
\end{aligned}
$$

Applying the product-to-sum formula, we then have In conclusion, we have seen that the principle $=\frac{\lambda_{4}}{4} \frac{\lambda_{2}}{2}$ based on a simple key equation (34). However, as mentioned in 4.7, there are several implementation issues that we need to address. Some solutions are provided in the subsections to follow. However, the analysis will require some knowledge of Fourier series which is reviewed in Section 4.3.

$$
\begin{aligned}
& v(t)=m(t-\tau)\left(\cos \left(2 \pi\left(2 f_{c}\right) t-\phi_{\tau}\right)+\cos \left(\phi_{\tau}\right)\right) . \\
& \hat{m}(t)=\operatorname{LPF}\{v(t)\}=\underbrace{m(t-\tau) \cos \left(\phi_{\tau}\right)}+m \overline{(t-\tau)} \cos \left(2 \pi\left(2 t_{c}\right) t-\phi_{\tau}\right) \\
& \text { The Fourier transform } \\
& \text { of } m(t-\tau) \text { will also } \\
& \text { be bendlimited to } B \\
& \text { can be bad at "some distance" } \\
& \text { as well. Therefore, } \\
& \text { its frequency content is } \\
& \text { multiplied by } 1 \text { across, } \\
& \text { Ex. } \quad \phi_{\tau}=\frac{\pi}{2}+k \pi \\
& \text { all frog. Therefore, } \\
& \text { the whole } m(t-\tau) \cos \left(\varnothing_{\tau}\right) \text { passes through the LPF. }
\end{aligned}
$$

[^0]: ${ }^{16}$ Technically, the variation of "frequency" is not as straightforward as the description here seems to suggest. For a sinusoidal carrier, a general modulated carrier can be represented mathematically as

 $$
 x(t)=A(t) \cos \left(2 \pi f_{c} t+\phi(t)\right)
 $$

 Frequency modulation, as we shall see later, is resulted from letting the time derivative of $\phi(t)$ be linearly related to the modulating signal. [15, p 112]

